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Abstract
We review a number of different approaches which have been used in order
to explain the physical properties of some metallic spinels, in particular of
magnetite Fe3O4 and LiV2O4. It is also pointed out that in geometrically
frustrated lattices such as the pyrochlore structure one may have excitations
with fractional charge.

1. Introduction

Spinels have the composition AB2O4 and can be considered as face centred cubes of O2− ions.
The B ions are surrounded by an octahedron of O2− ions, i.e., BO6, and are positioned on
corner-sharing tetrahedra. The latter form a pyrochlore lattice. Often the pyrochlore lattice
is called a geometrically frustrated lattice. There exists a large amount of work dealing with
pyrochlore lattices with a spin, e.g., of 1/2 attached to each lattice site. In the case of an
antiferromagnetic nearest neighbour interaction the ground state is believed to be a spin liquid
since the interactions are frustrated. A large fraction of the present conference is dealing with
various effects and physical phenomena based on those spin frustrations.

Here we are interested in a different type of situation. We want to review a number of
approaches which deal with metallic spinels in which the electrons are itinerant. There are three
spinels which belong into that category. They are Fe3O4 (magnetite) as well as LiV2O4 and
LiTi2O4. The three materials have quite different physical properties. A characteristic feature
of Fe3O4 is a metal–insulator transition at 120 K due to charge order. Quite different is LiV2O4.
Here it was found that the system has heavy quasiparticle excitations at low temperatures [1]. It
is considered the first case of a d-electron system found with heavy fermion behaviour, despite
the fact that (YSc)Mn2 shows similar features [2, 3]. Finally, LiTi2O4 is a superconductor with
a relatively high transition temperature of Tc = 13.7 K [4, 5].

In the following we shall discuss a number of different approaches which were suggested
in order to explain the heavy quasiparticle behaviour of LiV2O4. Before doing this we want to
discuss briefly the case of Fe3O4 and what we learn from it. Towards the end we want to bring
to attention some thoughts about a possible appearance of excitations with fractional charges
in frustrated lattices like the pyrochlore or checkerboard one.
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2. A reminder of Fe3O4

Magnetite Fe3O4 is one of the most studied minerals because of its important role in magnetism.
It has the spinel structure AB2O4 with A = Fe3+ and B = Fe2,5+. Because we may assume
that the intra-atomic correlations on a Fe site are rather strong we may safely assume that 50%
of the B sites are in a Fe2+ configuration and 50% are in a Fe3+ one, i.e., fluctuations into other
configurations such as Fe1+ or Fe4+ etc are suppressed. Verwey and Haayman [6] observed
around 120 K a phase transition from a high temperature metallic into a low temperature
insulating phase. This transition is named after Verwey who presented a model for that
transition. According to his model one is dealing here with an entropy driven order–disorder
phase transition. The prerequisite is a sufficiently strong nearest neighbour interaction between
the B sites Fe3+ and Fe2+. Let us denote the interactions between two neighbours Feα+–Feβ+

by Vαβ and neglect the delocalization of the d electrons, i.e., we treat them as being nearly
localized. In that case an order–disorder transition may take place, provided that

δV = V33 + V22 − 2V23 > 0. (1)

Verwey suggested a low temperature phase in which the Fe2+ and Fe3+ ions order along
two families of chains in a pyrochlore lattice with one family pointing, e.g., in the (110) and
the other in the [1–10] direction. But it was pointed out by Anderson [7] that in the presence
of nearest neighbour interactions only, there are an exponentially large number of different
states with the same repulsion energy as in Verwey’s structure. This is a special feature of the
pyrochlore lattice. All states in which the tetrahedra are occupied by two Fe3+ and two Fe2+

ions have the same repulsive energy (tetrahedron rule). Therefore in the absence of hopping or
kinetic energy processes the ground state is highly degenerate. It is still an unsolved problem
how this degeneracy is lifted by the inclusion of the kinetic energy terms, by longer ranged
interactions or by lattice distortions. In any case, it is important to realize that a computation
of the phase transition temperature must take into account that there are many distributions
of the Fe2+ and Fe3+ ions possible with almost the same energy. Otherwise one would find a
much too high transition temperature. For a conventional order–disorder phase transition the
latter would be given by TV = 2δV/kB, where kB is Boltzmann’s constant, and of the order of
several thousands of kelvins.

3. LiV2O4—some basic facts

As pointed out above, LiV2O4 is considered the first system found involving d electrons which
shows heavy quasiparticle behaviour. The coefficient γ of the low temperature specific heat
C = γ T is enhanced and of order γ � 0.4 J mol−1 K−2. The spin susceptibility shows a
behaviour

χS = χ0 +
c

T + �
, � = 63 K (2)

which is Curie–Weiss-like at high temperatures. The susceptibility is equally enhanced at
low T as is the coefficient γ . The Sommerfeld–Wilson ratio RW = πk2

BχS(T = 0)/(3µ2
Bγ )

is found to be of order unity. Furthermore, the resistivity is found to be ρ(T ) = ρ0 + AT 2

with a large coefficient A = 2 µ	 cm K−2. These are typical hallmarks of heavy fermion
systems. When the entropy S(T ) is calculated from the specific heat data one finds that
S(T = 60 K) − S(T = 2 K) = 10 J mol−1 K−1 which is close to 2R ln 2 where R is
the gas constant. This implies that at 60 K we must have almost one excitation per V ion.
This is inconceivable with a conventional band description of the 3d electrons. A number
of calculations based on the local density approximation (LDA) to density functional theory
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Figure 1. Decomposition of t2g orbitals so that they form three 1D bands (from [10]).

show that the electrons around the Fermi energy are of 3d t2g character. These states are well
separated from the eg states as well as from the oxygen p states. But the width of the t2g bands
is of order 2 eV and therefore at 60 K only a small fraction of those electrons can be excited
due to Pauli’s principle. In fact, a factor of 25 is missing in the calculated density of states for
explaining the observed large γ value.

Finally, it is important to know that under hydrostatic pressure LiV2O4 undergoes a phase
transition into an ordered state at approximately 6 GPa [8]. This indicates that nearest neighbour
charge interactions are important in that material, like in Fe3O4. In the following we want to
discuss a number of different theories which have been advanced to explain these experimental
findings.

4. Weak coupling approaches

One suggestion which has been made to explain the heavy quasiparticles is based on multi-
component fluctuations [9]. The fluctuations due to the t2g and spin degrees of freedom
are described by introducing 35 generators of the SU(6) group and calculating with them
the corresponding generalized susceptibilities, i.e., χ

αβ

nn′ . Here n, n′ denote the four different
sublattices of the pyrochlore structure and α, β label the different generators. This matrix
has the dimension 144 × 144 but decomposes into spin singlet and triplet sectors, where each
sector is represented by a charge–charge and longitudinal spin–spin susceptibility. Those
susceptibilities are calculated within the RPA based on a multiband Hubbard Hamiltonian.
It includes on-site interactions but neglects interactions between different sites. From the
imaginary part of the dynamical susceptibilities the free energy is calculated and from it the
specific heat. For large on-site repulsions, i.e., U > Uc, the RPA susceptibilities diverge, but
for U � 0.8Uc where Uc is the critical repulsion one finds γ values of the observed size.
However, the Wilson ratio RW � 0.1 instead of RW � 1–2 because of the large contributions
of orbital degrees of freedom to the γ value.

Another model theory considers the pyrochlore structure of the V ions as a network of
Hubbard chains [10]. Three families of quarter-filled Hubbard chains are considered pointing
along (1,±1, 0), (1, 0,±1) and (0, 1,±1) (see figure 1). For simplicity it is assumed that a
hybridization between different chains takes place at the same site instead of between different
sites and furthermore that it is weak. Due to the one-dimensional features, electron correlations
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have strong effects, e.g., on the spin susceptibility χ1D
S (q, ω). In fact, the latter diverges at

a reciprocal lattice vector q = Q0, but the singularity is removed when a crossover from
1D to 3D at a temperature T ∗ is taken into account. For T > T ∗ the system behaves one-
dimensionally, but for T < T ∗ it is a three-dimensional Fermi liquid. When the self-energy
�(ω) is calculated from χ1D

S (q, ω) with the smoothed singularity we can calculate from it

γ =
(

1 − ∂�

∂ω

∣∣∣∣
ω=0

)
2π

3vF
, (3)

and find values of the order of the observed size. The theory is applicable for T sufficiently
close to T ∗.

5. Theories with on-site d–d repulsions

There are a number of theoretical approaches which take a strong on-site Hubbard U at the V
sites into account but neglect intersite interactions. Several of them keep one of the t2g electrons
as localized and consider the remaining 0.5 d electron per V site as itinerant. The following
argument is used to justify this division. Due to a slight distortion of the oxygen octahedra
surrounding the V ions the t2g states of an ion split into an a1g and two e′

g states. This splitting
is small against the corresponding bandwidths. Also it is found within LDA [11–13] that the
occupancies are n(e′

g) = 1.1 and n(a1g) = 0.4. But when instead a LDA + U calculation is
done the state with the lower orbital energy, i.e., the a1g state, becomes singly occupied while
the remaining 0.5 d electron is of e′

g character [14]. However, this seems to be a mean-field
result and from an atomic point of view it is difficult to see why only one of the two d electrons
of V3+ should be able to hop. In any case, when one d electron is considered as being localized
one might ask about a possible Kondo effect occurring in LiV2O4. Of course, the on-site
spin–spin interaction between a localized a1g and an itinerant e′

g electron is ferromagnetic and
of order JH � 1 eV due to Hund’s rule coupling. The interaction between an a1g electron
and e′

g electrons of neighbouring sites is antiferromagnetic via V–O superexchange but small.
There is also another ferromagnetic interaction contribution from double exchange. From
these considerations it seems unlikely that a Kondo effect is operative in LiV2O4. Despite
this it is an interesting problem to study the Kondo effect in a frustrated lattice [15]. The
corresponding Hamiltonian is

H = −
∑
i jσ

ti j c
+
iσ c jσ + J̃

∑
i

Siσi +
∑
〈i j〉

Ji jSiS j (4)

where J̃ > 0. The usual competition between the energy gain via the Kondo effect and the
RKKY interaction is modified here, because there is no antiferromagnetic long range order
possible in a frustrated lattice system. The effect of frustration can be taken into account by
choosing for Ji j random variables with a variance J/

√
z where z is the coordination number.

When the limit of infinite dimensions D → ∞ is considered the problem can be solved
analytically within dynamical mean-field theory (DMFT) and the large N approach. At T = 0
there exists a critical coupling constant Jc which separates a spin liquid state (J > Jc) from
a heavy fermion regime (J < Jc). In the limit of small J one finds essentially free spins
at temperatures T > TK (�Jc/kB) while below a coherence temperature T ∗ < TK one finds
again a heavy Fermi liquid. At high temperatures where kBT � J the spins turn from nearly
free into a spin liquid.

In the following we discuss models which are based on equation (4) but with J̃ < 0, i.e.,
with Hund’s rule coupling. One way of taking the spin liquid in a pyrochlore structure into
account is by assuming a nearest neighbour spin correlation of the form

〈Si S j〉 = − 3
2 �2. (5)
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Similarly Hund’s rule coupling can be treated in a mean-field approximation by requiring

〈Si σ j 〉 = u2. (6)

The mean field is determined from a pseudo-hybridization between the a1g electron
described by the creation operator a+

iσ and the itinerant e′
g electrons with creation operators

c+
iσ :

J̃
∑

i

Siσi → J̃ u
∑

i

(a+
i↑ci↓ + a+

i↓ci↑ + h.c.) +
J̃

2
u2 N. (7)

Here N is the number of sites and the subsidiary condition
∑

σ 〈a+
iσ aiσ 〉 = 1 must be obeyed.

There are two different temperatures of relevance. Above T = Tmag the variable � = 0 and
spin correlations are absent. In that regime a Curie–Weiss law holds. A vanishing mean field
u marks the temperature THF (�20 K) below which we have a narrow a1g band at EF and
therefore heavy quasiparticles [16].

The mean-field approach can be generalized by also treating the a1g electron as itinerant
and taking the on-site Coulomb repulsion between the a1g and e′

g electrons in a slave boson
mean-field approximation into account [17]. Similarly to in the LDA + U one obtains again a
singly occupied a1g orbital at each site. The two-band Hamiltonian is in this case

H = H0(eg, a1g) +
∑

i

Hw(i) (8)

where the first term is the kinetic energy of the a1g and eg (described by one orbital only)
electrons while Hw(i) is the interaction part

Hw(i) = U(ne↑(i)ne↓(i) + na↑(i)na↓(i)) + U ′ne(i)na(i) + J̃σe(i)σa(i) (9)

with J̃ < 0. The subscripts e and a refer to e′
g and a1g orbitals, respectively. It is assumed that

the orbital energy of the e′
g electrons is 0.2 eV higher than that of the a1g orbital. Furthermore,

U → ∞ is assumed and U ′ � 3 eV and J̃ � −1 eV. Five slave boson fields are introduced,
i.e., for an empty site, a singly occupied one with an e′

g or a1g electron and a doubly occupied
site with a total spin S = 0 and 1. The corresponding mean-field values are e, pe, pa, dS=0 and
dS=1. When the mean-field equations are solved for the parameter values described above it is
found that 〈na(i)〉 � 1 because of the lower orbital energy. The corresponding a1g bandwidth
is strongly renormalized by a factor

qa � 1 − 〈na〉
1 − 〈na〉/2

� 1 (10)

as in the Gutzwiller approximation to the Hubbard model [18]. This gives rise to a sharp
resonance at EF and therefore to heavy quasiparticles.

Finally we discuss a model which goes beyond the mean-field approximation [19]. Again,
it assumes that an a1g electron is localized but it treats both e′

g orbitals labelled 1 and 2 so the
Hamiltonian is

H = −
∑
〈i j〉

t12(c
+
i1σ c j2σ + h.c.) + U

∑
iα

niα↑niα↓ + U ′ ∑
i

ni1ni2

+ J̃
∑

i

Si(σi1 + σi2) + J
∑
〈i j〉

SiS j . (11)

The 〈i j〉 are nearest neighbour pairs and J̃ < 0. Note the similarly with equations (4), (5).
A strong ferromagnetic coupling between the a1g and e′

g electrons is assumed by setting
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− J̃ → ∞ and the spin correlations of the localized a1g electrons imply that the hopping
matrix element t12 changes to

t12(S) = t12

√
1 + 〈SiS j 〉/2S2 (12)

like in the manganites. The treatment of the spin correlations 〈SiS j 〉 takes frustrations on
the pyrochlore lattice into account [20]. When the limit U → ∞ is taken the Hamiltonian
simplifies to

H = −
∑
〈i j〉

t12(S)(c+
i1c j2 + c+

i2c j1 + h.c.) + U ′ ∑
i

ni1ni2. (13)

That is, for the ci operators there remains only one additional index. The latter plays the role of
a pseudospin. Therefore H has the form of a Hubbard Hamiltonian which is treated by iterated
perturbation theory close to quarter-filling. With increasing U ′ a Kondo-like sharp resonance
is obtained resulting in heavy quasiparticles at low temperatures. The thermodynamics as well
as the transport properties can be expressed in terms of a crossover temperature T ∗, going from
a heavy Fermi liquid to a spin liquid.

6. Model with nearest neighbour interactions

As pointed out before, LiV2O4 charge orders under pressure. This suggests that nearest
neighbour interactions must be important. Therefore the following Hamiltonian should serve
for a description:

H = −
∑
〈i j〉ν

tν(c
+
iνσ c jνσ + h.c.) + U

∑
iν

niν↑niν↓ + U
∑

i j,ν>µ

niνniµ

+ V
∑
〈i j〉

ni n j + J̃
∑
iνµ

siνsiµ +
∑
〈i j〉

Ji j (Si , Sj )SiS j . (14)

The notation is similar to before with ν = 1, 2, 3 denoting the different t2g orbitals. The
important new term is the one including V and the charges ni = ∑

νσ niνσ at nearest neighbour
sites i and j . One may safely assume that U is sufficiently large that only the configurations d1

and d2 are allowed and furthermore also that J̃ is large enough as compared with tν that the d2

configurations have S = 1. The interactions Ji j will depend on the respective spins S = 1/2
or 1 at sites i and j .

Recalling that LDA band structure calculations require an additional effective mass
enhancement by a factor of 25 in order to explain the low temperature specific heat, one
may ask the question of whether the strong correlation limit would not make a better starting
point [21]. In that case one has to neglect the kinetic energy term in equation (4) and take the
hopping of electrons into account only via the effects on the spin interactions Ji j(Si j S j ). When
the tν are neglected the tetrahedron rule must be obeyed. This implies that on each tetrahedron
two sites are in a d1 configuration with S = 1/2 and two are in a d2 configuration with S = 1.
There exist an exponentially large number of states which fulfil the tetrahedron rule. Each of
these states consists of chains and rings of sites with S = 1/2 which are separated by chains
and rings of sites with spin 1 [21]. This is a consequence of the pyrochlore structure. With the
help of constrained LDA + U calculations one can determine the nearest neighbour coupling
constants Ji j(Si , Sj ). One finds values for J (1/2, 1/2) = 3 meV and J (1, 1) = 24 meV; i.e.,
spin 1 sites are much more strongly coupled to each other than spin 1/2 sites. In addition
spin 1 chains or rings have a gap in the excitation spectrum (Haldane gap). Therefore the spin
1/2 chains and rings are virtually uncoupled from each other. The only way of coupling them
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(a) (b)

Figure 2. The checkerboard lattice consisting of an equal number of d0 and d1 configurations
which are connected by dashed and solid lines, respectively. (a) One electron has been added so
that the tetrahedron rule is violated on two tetrahedra (squares) marked as dark. (b) By a hop of
an electron from the lower left corner the excitation has fallen apart into two pieces each with the
charge e/2 (from [23]).

is via the spin 1 chains and rings and this coupling is in addition frustrated. Therefore one can
determine the specific heat and susceptibility directly from [22]

γ = 2

3

kB R

J (1/2, 1/2)
, χS = 4µ2

eff R

π2 J (1/2, 1/2)
. (15)

Note that the Sommerfeld–Wilson ratio is RW = 2.
In order to explain the measured specific heat coefficient γexp one would need

J (1/2, 1/2) = 1.2 meV, instead of the calculated 3 meV. It is known that LDA+U calculations
overestimate spin interactions. In any case, the improvement which is needed here is much
less than the factor of 25 when a band structure calculation is used as a starting point. The
above considerations suggest that for LiV2O4 a frozen charge state is a much better starting
point than a band structure calculation, at least as far as the low temperature thermodynamic
specific heat and susceptibility are concerned. The latter are obviously robust with respect to
the kinetic energy term. Why LiTi2O4 is so different from LiV2O4 remains an open question
within that approach.

7. Fractional charge excitations in a pyrochlore lattice

It is interesting to realize that in a geometrically frustrated lattice such as a pyrochlore structure
one can have excitations with fractional charge when electron correlations are strong. We
demonstrate this by considering for better visualization a checkerboard structure instead.
Furthermore, we assume an average of 0.5 electrons per site. We begin with a reduced
Hamiltonian for spinless fermions of the form

Hred = −t
∑
〈i j〉

{ f +
i f j + h.c.} + V

∑
〈i j〉

ni n j . (16)

Here f +
i ( fi ) creates (destroys) a spinless fermion at site i and ni = f +

i fi . Assume that
t/V is very small and that an electron is added to any of the configurations which obey the
tetrahedron rule. In that case the rule is violated in two neighbouring tetrahedra, because of
corner sharing. When the hopping is turned on, these two tetrahedra can separate from each
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other without increase in the nearest neighbour repulsions (see figure 2). There is seemingly no
restoring force in this model. Each of the two separate parts of the original excitation must have
a charge e/2. When the spin is added to the considerations one finds that it is represented by
a spin 1/2 chain consisting of an odd number of sites. This chain connects the two tetrahedra
which violate the tetrahedron rule and has a twofold-degenerate ground state. It represents the
spin which here is distributed over large parts of the system. A finite kinetic energy will also
generate vacuum fluctuations. Thereby an electron is hopping to a neighbouring empty site.
As a consequence one of the tetrahedra contains one empty and three occupied sites (charge
e/2) and another one has three empty sites and one occupied one (charge −e/2). There can
be recombinations taking place between a charge e/2 from a vacuum excitation and that from
an added electron. Therefore we expect a certain fraction of excitations with charge e/2 as
well as with charge e. For further details we refer the reader to the original literature [23].
Excitations with fractional charges can also appear in other frustrated lattice systems.
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[12] Eyert V, Höck K-H, Horn S, Loidl A and Riseborough P S 1999 Europhys. Lett. 46 762
[13] Singh D J, Blaha P, Schwarz K and Mazin I I 1999 Phys. Rev. B 60 16359
[14] Anisimov V I, Korotin M A, Zölfl M, Pruschke T, Le Hur K and Rice T M 1999 Phys. Rev. Lett. 83 364
[15] Burdin S, Grempel D R and Georges A 2002 Phys. Rev. B 66 045111
[16] Lacroix C 2001 Proc. HFM 2000; Can. J. Phys. 79 1353
[17] Kusunose H, Yotsuhashi S and Miyake K 2000 Phys. Rev. B 62 4403
[18] Gutzwiller M 1963 Phys. Rev. Lett. 10 159
[19] Laad M S, Craco L and Müller-Hartmann E 2003 Phys. Rev. B 67 033105
[20] Canals B and Lacroix C 1998 Phys. Rev. Lett. 80 2933
[21] Fulde P, Yaresko A N, Zvyagin A A and Grin Y 2001 Europhys. Lett. 54 779
[22] Bonner J C and Fisher M E 1964 Phys. Rev. A 135 640
[23] Fulde P, Penc K and Shannon N 2002 Ann. Phys., Lpz. 11 892


